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Nonparametric Statistical Data Modeling*

by

Emar.uel Parzen

1. Introduction

“To unlock the analysis of a body of data, to find the good way or

ways to approach it, may require a key whose finding is a creative act.”

writes John Tukey (1977) in the Preface to his book Exploratory Data

Analysis. It is the aim of this paper to introduce new types of keys for

exploratory data analysis (of continuous data) based on estimating the

guantile function and density quantile function. It appears that this

approach leads to an exploratory data analysis which has a firm probability

base. Consequently the distinction between exploratory and confirmatory

data analysis can be regarded as a distinction between confirmatory non—para—

metric statistical data analysis or modeling, and confirmatory parametric

statistical data analysis.

Quantile, quantile—density, density—quantile, and score functions are

defined in Section 2, and their fundamental inter—relations are discussed.

Transformations to observed data which have specified distributions are

studied in Section 3, and formulas are given for their derivatives. Auto~-

regressive representations of density—quantile functions are introduced in

Section 4. Sample quantile functions and their linear functionals are

defined in Section 5. Goodness of Fit Tests for location and ecale parameter

* Research supported in part by the Army Research Office (Grant DA AG29—7 —0239).

. 

1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-..



— l a —
4

S

models are introduced In Section 6. Estimators of density—quantile functions

are discussed in Section 7. Section 8 considers two examples — Rayleigh

data and Buffalo snowfall. Section 9 discusses theoretical examples of

density—quantile functions, and their classification according to tail behavior.

Location and scale parameter estimation is discussed in Section 10. Section 11

lists some open research problems for extensions.
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2. Quantile functions and density—guantile functions

The distribution function (d.f.) of a random variable X is widely

denoted F(x) PEX � xJ . The random variable X is said to be continuous

(more precisely, absolutely continuous) when F has a probability density

function (p.d.f.) f(x) — F’(x) in terms of which

F(x) f(y) dy

Statistical inference has as one of its major aims the estimation (by

estimators which are ‘~fficient
”or Bayesian, etc.) of F(x) and f(x) from

data X1,...,X~ assumed to be a random sample of X (that is, independent

random variables identically distributed as X , denoted i.i.d.).

Parametric statistical inference assumes a representation for F(x)

and f(x) as functions of a finite number of parameters, and the estimation

problem is posed as one of estimating theSe parameters. An important para-

metrization, called the location and scale parameter model, assumes a

representation

F(x) ~~(x u)

- 
f (x) — 1 f ( X ~~~ 1)

where F0 is a specified d.f. and ~i and a are parameters to be estimated

(called location and scale parameters respectively).

The procedures for non—parametrically estimating f(x) , and for

estimating i and a , to be introduced in this papet, begin by estimating
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L. 

._ _

functions with the following Definitions:

Quantile function (q.f.) Q(u) — F~~ (u) , 0 � u � 1

Quantile—density function (q.d.f.) q(u) Q’(u) , 0 <u < 1

Density—quantile function (d.q.f.) fQ(u) — f(Q(u)) , 0 � u � 1

Score function (sc.f.) J(u) — — (fQ)’(u) , 0 < u < 1

These functions arise constantly in non—parametric statistics, but they

do not seem to be usually given names, or have a universally accepted nota-

tion, or be systematically tabulated or discussed (see Rajek and Sidak (1967)).

It is customary mathematical notation to denote a composite function

such as f(Q(u)) by fQ(u) ; we pronounce it the “ef f—cue” function.

For a general distribution function F(.) which is only assumed to

be continuous from the right one defines

Q(u) F~~(u) — m E  (x : F(x) � u)

Properties of Q and F can be deduced from each other, using the follow-

ing fundamental Theorem: for all x in —~ < x < — and all u in

0< u < l

F(x) � u if , and only if, Q(u) � x

(for a proof see Roussas (1973), p. 186 where in addition it is shown that

FQ(u) � u for any distribution function F ), 

—.-~ ---- ~~~~~~~ —--- ~~~~~~~~~~~~~~~~~~~~ -~—~~
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Theorem. When F is continuous, Q satisfies

FQ(u)—u

When F is continuous and strictly increasing there is exactly one x

such that 7(x) u ; then Q(u) equals this value of x and

QF(x) — x

Differentia ting FQ (u) — u , we obtain (by the rules for differentiating

composite functions) the Reciprocal. Theorem:

fQ(u) q(u) — l

In words, fQ and q are reciprocals of each other (which justif ies calling

them by names which are the reverses of each other).

The q.d. function q(u) thus plays a pivotal role. From a knowledge

(or estimator) of q one obtains both Q(u) and fQ(u) by the formulas

Q(u) — Q(u
0) — j

U 
q(t) dt ,

U0

fQ(u) — .

By the rules for differentiation of composite functions

(fQ) ’( u) — f ’Q(u) q(u)

~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~
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so the score function satisfies

J(u) — — f~~~(~i) 
— — f’(F~~ (u))

Q u  f (F~ (u) )

which is the customary definition of the score function in the literature

of non—parametric statistics. For purposes of estimation of the score func-

tion in small samples, the usual definition requires one to first estimate

V , f , and F 1 ; our definition requires one only to estimate (fQ)’ which

we wi1~, be able to do by a polynomial in e2~~”

Many formulas of statistical theory become unif ied when expressed in

terms of quantile f unctions, density quantile functions, and score functions.

The different kinds of tail behavior of distributions clearly correspond to

the behavior of Q(u) as u tends to 1 or 0 . The formula defining the

Pearson family of freq uency curves , which is of the form (see Elderton and

Johnson (1969))

— f ’ ( x) 
— 

a0 + a 1x
f ( x) 2b + b  x + b 2 x

can be rewritten, by letting x — Q(u) , as a relation between J(u) and

Q(u) :

a0 + a1 Q(u)
.7(u) — . 2b0 + b1Q(u) + b2Q (u)

Expectations can be expressed in terms of quantile functions. For any

function g for which the integrals are finite we have the Theorem:

-~~~~~ ----———-—.._ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. . - — • ~~~~~~~ .-— —— . —-— .-
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1 .
E(g(X) ] — f g(x) f ( x) dx — f gQ(u) du

-~~

To prove this formula, make the change of variables x — Q(u) , u 7(x) ,

du — f ( x) dx . In particular , moments are given by

1— E(X) — f Q(u) du
0
1

E(X 2) — I Q2(u) du
O

1
— Var (X) — I IQ(u) — ii I 2 du

0

We obtain conditions for the integrab ility of fQ( u) and log fQ(u)

f rom the Theorem:

1
f g(~~~u)) du 

= f g(f(x)) f(x) dx
0 -—

whence

1
I fQ(u) du — I f 2 (x) dx

O —
~~

1 —

I log fQ(u) du — f f ( x) log f (x) dx
0 —

The right hand integrals are familiar in statistical theory, and we believe

it is because they are evaluations of the integrals of EQ and log fQ .

The reader interested in examples of fQ functions should see Section 9. 

_ _
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3. Transformations

A basic technique of statistical data analysis, and also of statistical

distribution theory, is to transform a continuous random variable X to

a continuous random variable Y = g(X) where g is an increasing continu-

ous function. To express the distribution function F~ of ‘1 in terms of

the distribution function F of X we have the Theorem:X

Y — g(X) implies F~ (y) = F
~(g

’(y))

However the quantile functions are more explicitly related; under the

assumption that F
~ 

is a strictly increasing continuous distribution

function; we have the Theorem:

Y — g(X) implies Q~(u) = 
g(Qx(~)) (1)

which can be deduced from the fact that

Py (Y) � u iff F~(g
_l
(y)) � u 1ff g~~ (y) � iff Y � gQ

x
(u)

Two important Corollaries are: (i) Y = ~i + a X , where a > 0 , has

quantile function Q~ (u) = ~i +aQx (u) ; (ii) for X positive, Y = log X

has

quantile function Q~ (u) — log Qx (u)

density—quantile function f~~Q~~(u) = 

~~~ ~~
score function J~ (u) Qx (u) 

~~~~~~~~ 
— 1

Since a scale parameter can be converted to a location parameter by taking

logarithms, it is not surprising that the function Qx(u) 3X~”~ 
— 1 arises

often in the study of location and scale parameters.

L — —•-—-—.--— - . - —.— ..,——.—.—— -—— ..— .
~
..- -.- -—-. .-. .——.-.. —
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One should keep handy a table of quantile functions of familiar proba-

bility laws. If the quantile function of X can be transformed to the

quantile function of Y by an increasing continuous transformation g

then to transform X to data identically distributed as Y , form g(X)

By perusing a table of quantile functions one immediately obtains the follow-

ing Theorems (where Q
0

(u) appears in parentheses) :

(i) log X is extreme value distributed (log log 
1—u

if X is exponen tial (log 
l~~u 

) or Weibull 

(

‘

~ o~ 1_ u)) 
;

(ii) if log X is exponential, or log log X is extreme

value, then X is Pareto ({l — u} 8)

The probability density functions of these distributions is recalled

in Section 9.

To simulate a continuous random variable X , one starts with U which

is uniformly distributed on 0 to 1 and seeks an increasing function ‘V1

such that ‘V1
(U) and X are identically distributed ; (1) implies that

— Q
~
(u) as is well known.

Our aim in this paper is to show how to estimate from data increasing

functions ‘V and ‘I’~ , such that

‘V(X)—Y , ‘V
1
(Y) ’- X

where — means identically distributed as.

_ _ _ _ _ _ _  ___ -~~ -,—- —~~~~.—--—~~~~~~ —~~—--~~~~~ —~~ . .~~~~~~~~~ .-. ., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---
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When an observed .rand om variable X is not normal (or exponential)

one seeks to find a transformation of data which is normal (or exponential).

The cumulative hazard function H(x) in reliability theory, def ined by

H(x) = —log (i — F
~
(x)
)

has the property that H(X) is exponential with mean 1 . Thus estimating

11(x) can be regarded as actually estimating a transformation to exponentiality.

We are thus led to consider the problem of estimating the transformation

‘V such that ‘V(X) has a prescribed distribution function F
0 

; further,

let ‘Vi be the transformation such that 
‘V1

(Y) X where Y is a random

variable with d.f. F
0 
. Using suitable axioms tha t ‘V and ‘V~ be

monotone functions, one could prove

‘V(x) Q0 F(x ) , ‘V1
(y) = QF

0
(y)

where F and Q denote the d.f. and q.f. of X • We define these to be

the transformations desired since clearly

Q0
7(X) — Y , Q F

0
(Y) — X

To find ‘V and ‘Vl 
we will find their derivatives

*(x) — ‘V’ (x) *1(y) — ‘V~~(y)

—--. --— -.-----—-- ,-,-~~. -- —..-~--.—-- ~~~~~~--- 
__ __

~~~~~~~
_

~~
____

~~
1___

~

__ 
- --- -- -~~~~~ --.. ——
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The definitions ‘V — %F and ‘V
1 — QF0 imply the Theorem:

*(x) — q0(F(x)) f(x)

lIil
(y) — q(F0(y)) f 0(y)

Now let x Q(u) and y - Q0(u) ; we obtain the Theorem:

*Q(u) — q0(u) fQ(u)

•1Q0(u) q (u) f 0Q0(u)

One immediate conclusion is that ~j iQ and g 1Q0 are reciprocal functions ,

so estimating one immediately yields the other .

A second conclusion is that estimating 4’Q and estimating fQ are

equivalent problems since f 0Q0 is a known function.

The function which turns out to be natural to estimate is denoted

d(u) , to indicate that it is a density, with the Definition:

d( u) — 
~~~~

- f 0Q0(u) q(u)
0

where Co is a normalizing constant with the Definition:

— f f 0Q0(u) q (u) du

Conditions for to be finite are easily obtained from our general classi—

faction of fQ functions . a~ can be regarded as a scale parameter ; its

relationship to other measures of scale will be derived from the Theorem

(which follows by integration by parts) :

_ _ _  _ _ _  _ _ _  A



---- .--

— 11—

1.
— I 30(u) Q(u) du0

assuming f 0Q0(u) Q(u) — 0 for u — 01
We f ind it convenient to introduce the following terminology and

Definitions: d(u) is the f 0Q0 — transformation densiçy of X

U
D(u) — f d(t) dt , 0 � u � 1

0

is the f0Q0 
— transformation distribution function of X , and

1
•(v) — f ~~~~~ d(u) du , v — 0, ± 1,...

0

is the f
0Q0 

— transformation correlation function of X

A distribution function equal to cl
0
D(u) has been extensively studied

in reliability theory (see Barlow and Doksum (1972)) under the notation

1 P~~(u)
H7 (u) — f0[F0 F(x)

] dx

which we write in our notation, letting t — F(x) ,

— f f0Q0(t) q(t) 
dt

What is novel in our approach is that we consider the density function and

Fourier transform of this distribution function.

Recently, Barlow and Campo (1975) and Barlow and Proachan (1977) have

studied the statistic  

~~~~ -.--
..

~~~~~~~~~~~-~—-—--——,..,. — -~~~~-“— - ---—... ..- ,-.—. ..- -..-—- . -. --~
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—1
—1 F Cu)

H.7 (u) - f {l—7(x))dx
0

which they call the total time on test transform of the distribution F , and

use it to test for exponentiality. It is the same as our a0D(u) with

f0Q0 — 1—u , the density—quantile function of the exponential distribution.

- .~. .~~ .



.-~~~~~~~~~~~~~
--- -----——,,-- ..--. —,-- .-—.--.-.---.-- _ - w- • - - ..- , -----—--- ,, --~~~~~~~~—,~~~~~~~~~ 

- -- -..

— — 13—

4. Density—Quantile Autoregressive Representations as Generalizations of

Goodness of Fit Hypotheses

The concepts have now been def ined to state our new approach to

statistical data analysis. Given a random sample X1,...,X~ of a random

variable X one would like to test the hypothesis H
~ 

that the data is

normal (or exponential or any other specified type) and/or one would like to find

a transformation of the data after which it is normal (or exponential or

any other specified type). By a specified type we mean that the true d.f.

F is of the location—scale parameter form

7(x)

where i and a are parameters to be eff iciently estimated , and F
0 is

specified. When testing normality, 7
0

(x) ~(x) , the standard normal

distribution function.

Theorem: H
~ 

is equivalent to any one of the following hypotheses:

Q(u) — 1~i + a Q 0(u) , q(u) — 0q0(u) , fQ(u) — 
~~ 

f0Q0(u),

d(u) — 1 , D(u) u , $(v) — 0 for v ~4 0

When the density d(u) is constant, it is called “white noise” in

honor of an analogous situation in time series analysis. An approach to

testing this hypothesis which also provides an estimator of d(u) when we

do not believe it to be a constant is to represent it in a form called an

autoregressive representation (since it is analogous to the spectral

density of an autoregressive scheme in time series analysis).

Definition: A density d(u) is said to be autoregressive of order is ,

or to have an autoregressive representation of order m , if it is of the form

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,——--~~~~~~~~~~~~~~-~~~~ ..-—.~~ — —-~~~
..- ——
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d(u) — 1
~~~I 1 + cs~(l) e

2
~~~ ÷ ,., + ct (m) e2h)1um1

2 (1)

where is is an integer called the order (whose determination is the most

difficult estimation problem), K
~ 

is a positive constant (corresponding

to the finite memory m one—step ahead mean square prediction error), and

a~
(l) ,ct~(m) are complex—valued coefficients satisfying the condition

that

g~ (z) - 1 + z + ... + a (m) z~

has all its roots outside the unit circle. (For future reference note that

z* denotes the complex conjugate of z )..

f0Q0 (u)When d(u) — 
~~~~ 

is autoregressive of order m , one obtains a
00 (~

u,

representation for fQ which generalizes the formula which holds in the loca-

tion and scale parameter model:

fQ(u) — cm li + 
~~~~ 

e
2
~
1U + ... + a~(m) e

2w1
~mI

2 
f
0Q0

(u) (2)

where

- I I l + ~~(l) e
2
~
iU + •,,. + ~~ (m) e2~~Um 1

2 
f
0Q0
(u) q(u) du

In fact we use low order schemes to represent d(u) . We thus con—

aider successively representations for fQ(u) of the form

is — 0 fQ(u) — c0 f 0Q0(u)

a — 1 fQ(u) — c1 (1 + a (l) 
2’rriu

1
2 
fQ ( )

a — 2 fQ(u) — c2 Ii + 
~2 0) e2’7

~
t1 + C*2 (2) e2~~

tI2
I
2 
f0Q0(u)

______________________________________ ~~-~—-~~- —~~~~~~~ --~~~— .--~~~~.
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and so on. It is clear that we have a sequence of representations for fQ

which start with the hypothesis 110 and ascend to the general representation

fQ(u) - f
0Q0

(u) çj i + a (1) e2~~~ + ... + a (m) e2~~
”
~ + ... 12 (3)

The infinite—order autoregressive representation (3) holds when conditions

such as the following are true (see Geronimus (1960)) : first,

fQ( ) f
0Q0

(u)
f 0Q0(u) ‘ fQ( u) , log fQ(u) , log f0Q0(u)

are all integrable over 0 � u � 1 ; second, fQ and f
0Q0 

satisfy a

smoothness condition such as differentiability. The speed of convergence

of the approximations of order m to the infinite order case depends on

the number of derivatives that exist, and is exponentially fast for inf in—

itely differentiable functions.

Theorem: The coefficients of an autoregressive representation of order m

for the f0Q0 — transformation density d(u) can be computed from a knowledge

of the f
0Q0 

— transformation correlations ~~0),4(l),~~(—l),...,~~(m),4(—m)

up to lag m using the difference equation satisfied by ~~v)

•(—v) + cs~
(l) •(l — v) + ... + c&~ (m) $(m — v) — 0 , v > 0

$(0) + cs~
(l) •(l) + •..  + a

~
(m) •(m) — K

Proof: Since d(u) — ~~~~~~~~~~~~~~~~~~~~~~~~~ we can write

L ~~~ . 

. 

_ _ _ _ _ _ _ _ _
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$(—v) + ~~(l) 4(l — v) + ... + a (m) •(m — v)

— e’
~~~

1’
~
’ g~ (e271uI5 d(u) du

— 
I

’ 

e
2
~~
”
~ K

~
((g.

~(e2~~t1
))) du

Nov (g
~
(
~2~~h1
))
* 

is a polynomial in e 21n1u 
whose reciprocal has a con-

vergent power series in positive powers of e Z
~~

1 (with constant term eq..al

to 1) by virtue of the assumption on the location of the zeroes of g(z)

Since f~
’ 
~~~~~~~~~ du — 0 for positive v and k , the above expression

equal8 0 for v > 0 , and equals Km for v — 0

~~~~~~--. -—.--~~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. .,— -- .
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5. Sample Quantile Function

Given a sample X1,.. .,X~ of a continuous random variable X , we

denote the empirical distribution function (EDF) by ~(x) , read F wiggle;

it is defined by

7(x) fraction of X1,...,X~ � x

We shall give several definitions of the empirical quantile function

(EQF) denoted Q(u) . The first definition is

~(u) — ~~
l(u) — inf {x : ~(x) � u}

It is a piecewise constant function whose values are the order statistics

X(1) < X~2~ < ... < X~~ ; more precisely,

~(u) = X(j)  for ~ < u � , j = l,...,n

- For u — 0 ,. we def ine Q(0) — X (0) where X (0) is taken to be either the

sample minimum X (1) or a natu ral minimum when one is available (when X

is non—negative, one might take X(0) — 0 ) .

If one desires to form a smooth function from a wiggly function, it

seems reasonable to start with the smoothest reasonable definition (which is

diff erentiable if possible) . Consequently a preferable definition of Q(u)

aight be the piecewise linear function 

- - -.~~ - —~~ -~~ -—-~-— 
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Q(u) — — u) X(j_1) + — ~ ‘) X(j)

for � u and j —

Then ~(u) — ~
‘(u) is given by

~(u) fl(X(j) — X
(~ —

for 1’
~~~< u <1 and j 1,...,n .
U U

We call n(X
(J) 

— X(~_1)) j — l,...,n the spacings of the sample

(see Pyke (1965), (1972)). The most important fact about ~ (u) is

that it is asymptotically exponentially distributed with mean q(u) . The

sample spectral density of a stationary time series has an analogous property.

Consequently there is an isomorphism between spacings and sample spectral

densities; to any result about one there is an analogous result about the

other. The methods of proofs and exact hypotheses may need to be different

for the two .cases, but the statement of the conclusion is usually found to

be the same.

Estimators which may have better behavior in small samples from symmetric

densities can be obtained by adopting a shifted piecewise linear function as

the definition of ~(u)

--,- -

~

-. ~~~~~~~~~~~~~~~~~~~~~~ 
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~ (u) — 
1 

— ~) X(~) + n(u 2i
;
~l) X(j~1)

for 2j—l 
~ u ~ 

2j + 1 and j — l,...,n— 1 ;

— undef ined for u or u > 1 —2n 2n

Its derivative Is

~ (u) — n(X
(j~1) — X

(~)
) , 

2i;~~ 1 < u < 
2.1
2
+ 1

Finally a Bayesian def inition of Q( u) can be adopted, using the

Fractional Order Statistics Process defined by Stigler (1977).

For plotting of sample quantile func tions , we have found it useful to

normalize them:

~ (u) — ~(u) — ~
(O)

Q(l) — Q(0)

This is a monotone function on 0 � u � 1 whose values lie between 0 and

1 . In my view, normalized graphs enable one to apply the experience obtained

in analyzing data of one kind to the analysis of data of another kind.

The asymptotic distribution of the quantile process Q(u) , 0 � u � 1

is usually studied in the literature for the first definition; the work äost

useful to us is that of Czorgo and Revesz (1975), (1978) described in

Section. 9 and 10 of this paper (see also Shorack (1972)). An open research

problem is to shoi that this asymptotic
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distribution theory applies also to the other def initions of Q we have

given.

The basic estimators we form in practice are linear functionals

T — f W(u) dQ(u) . For the first definition of ~

T — ;~: 
w(~)cx (~+l) — X(~)

}

For the second def inition of Q ,

n j/n
T — Z n(X

(~) 
- X (4....1)) f W(u) du

j1 (j—l)/n

We might evaluate the integral by a simple Simpson’s rule approximation:

j /n  
W(u) du = ! ~ 1) + 4W(2~ ~1) +

(j—1)/n 
6 
L 

‘~. n ~. 2n \fl/

r
For the third definition of Q

n—l (2j+l)12n
T — E n(X ,4+1~ — X ,4~) I 

W(u) du
“~~ / ‘~~~‘ (2j—l)/2n

When W(u) — ~~~~~ f
0Q0(u) , 

we might approximate the last integral by

f “ ~~~~~~ e2~~~~~~
’
~ 

sin (nv/n)
O’~O~nJ 

liv

The distribution theory of linear functions of order statistics has

an extensive literature (see Chernoff, ~ st.,irth, and Johns (1967),

Moore (1968) , Stigler (1974)).

—-——..--—---.- - -. . -~--.- — ----. . - ---.- _ _ _ _ _
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6. Goodness of Fit Tests

Given a sample X1,...,X~ of a continuous random variable X , one

forms the EQF Q(u) and empirical quantile—density function ~(u) . Then

for each probability law type whose goodness of fit one might want to test,

there is a corresponding standard f
0Q0 

function. For each specified f0Q0

function one would compute :

I. Sample Transformation—Density Function or Weighted Spacings

d(u) = ~~~~
- f

0Q0
(u) q( u)

00

0
0 

- f f0Q0
(u) q(u) du

II. Sample Transformation—Distribution Function or Cumulative Weighted Spacings

~ (u) = I a(t)  dt , 0 < u � i.

III. Sample Transformation Correlations

1
$(v) I e

2
~
1
~
1V d(u) du , v 0, ± 1, ± 2 ...

0

To test the Goodness of Fit Hypothesis 11o one has available test

statistics as follows:

I O � u �l  ~ (u) , f log a(u) du . 
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II. D(0.5) , D(.75) — D(.25)

1 2
~~ ID(u) — UI ‘ 

jD(u) — u l du

1
f J1

(u) dD(u) for a specified J1(u)0

III. sequence 1P(l)l ,I4~(2)I ,. . .

E k(v) I~(v) I 2 for a specif ied k(v)
v#O

The distribution theory of many of these statistics have already been

studied in the literature. For a general D(u) , the almost sure con-

vergence to 0 of ~~~~~~~~~~ ID(u) — D(u)I was proved by Barlow and van Zwet

(1970). The asymptotic distribution of o,.~ was found by Weiss (1964).
1

The asymptotic distribution of f log d(u) du is the same as that of the

sample innovation variance, as given by Davis and Jones (1968) and Hannan

and Nicholls (1977).

Under H
~ , 

the asymptotic distribution of O�U 1 d(u) is the same

as the distribution in time series analysis (first found by Fisher (1929))

of the maximum normalized periodogram ordinate of white noise.

An important open research problem is the following Conjecture:

under 11o the stochastic process v7 {D(u) - U ]  , 0 ~ u ~ 1 is •

asymptotically distributed as a Brownian Bridge process B(u) , 0 � u � 1

L ~~~~~~~~~~~~~~~~~~~ - . . . ~~.. .~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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this has been proved for f0Q0(u) = 1 - u , corresponding to the exponential

distribution (Barlow (1976) personal colmaunicatton). It would then follow

that all statistics based on D(u) - u have the same asymptotic distribution

theory as the corresponding statistics based on 1(x) - x , 0 � x � 1 , where

~(x) is the EDF of a random sample from a uniform distribution on [0,lJ

whose theory is summarized by Durbin (1973).

The foregoing framework includes as special cases many goodness of fit

test statistics that are being proposed (for example, Andrews’ test for

normality (Gnandesikan (1977), p. 165) and tests f or Weibull and extreme

value distributions introduced by Mann and Fertig (1975)).

In the next section we propose additional Goodness of Fit Tests based

on determining the order of an autoregressive smoother to d(u)

-~
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7. Density—Quantile Autoregressive Estimation

Given a sample X1,...,X~ of a continuous random variable, we have

discussed how to test a Goodness of Fit Hypothesis by forming the sample

functions d(u) , D(u) , and 4~(v) . In this section we discuss how to

forsa autoregressive densities of order a , d ( u) , a — 0,1,... which are

candidates for estimators of the true density d (u) . The sequence has the

property that d0(u) is constant (identically equal to 1) and d
~
(u)

tends to &(u) as a increases.

For time series spectral estimation by autoregressive estimators

Parzen (1974), (1977) has introduced a criterion called CAT (criterion auto-

regressive transfer function) for determining the optimal order rn such that

d’.(u) is an optimal estimator of d(u) . We calculate an analogous criterion
a
for smooth densities d

~
(u) , def.~n~’d by

, m 
~CAT (m) ~ Z 
K .L _ K
.1 m

The distribution theory of CAT (m) is known approximately only under 11o
Consequently, at the present time we regard CAT as interpretable only when it

chooses rn — 0 ; then we regard it as additional confirmation that H0 
holds

(when this hypothesis is accepted by tests based on ~~~, i~, and/or I~ I 2 .

A graphical approach to choosing the appropriate smooth estimator

d
~
(u) which is the most likely estimator of d(u) is to use as a criterion

A

how D
~

(u) — I
~ 

d
~
(t) dt fits D(u) . If it fits too well one has over—

smoothed, and the density d
~
(u) will have spurious modes. One wants

A

D
~
(u) to follow D(u) but not slavishly.

Next we define the autoregressive estimators and state a theorem con— —

cerning their consistency. 

— -—-—.. - p . —. ~~~~ 
—.— — ..— .- -, —.—-—--— -— . .—  .-——— ——— —- .——— ..— —
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The autoregressive smoother of order a , denoted d~
(u) , is defined

to be

2
d
~

(u) - K 1i + cz
~(l) e2~~” + ,.. + ct (a) e2~~~I

where C$
~(l),. ..,%(In) are the values of a

~
(l),...,%(m) minimizing

‘

~~ 

g~(e2tth5~
2 
~(u) du ,

where g~(z) — 1 + %(l) z + .... + cs.(m) z~ ;

2
— 
I g,11~(e 

U
)I a(u) du

where - 1 + %(l) z + ... 4 %(m) z~

By the projection theorem in Hilbert space, c(s) satisfies the

orthogonality conditions

~: c 
21fiu
) 

—2wiuv 
~(u) du — 0

~OT v — l,...,a which is equivalent to the normal equations

~(-‘v) + a (].) ~(l - v) + ... + cs
~

(a) (m - v) - 0 (1)

for v — 1,...,m . Next , the orthogonality conditions imply



~~~~- - .~~~ --- , - . ~~~~~~~~~~~~~~~~~~~~~~~~~ - .  

— 2 6—

— 

~ 
c~~~~

’
~~

’
~
) a(u) du

A A 
—

— 1 + %(1) $(l) + .... + a (m) $(m)

A

A rigorous theorem concerning the consistency in probability of da(u)

as an estimator of d(u) can be proved by adapting the work of Carmichael

(1976) in his Ph.D. thesis on the autoregressive method for probability

density estimation.

Theorem (Carm ichael (1976)). If

(1) d(u) , d~~(u) , log d(u) are integrable

(2) d(u) is bounded above and below in the s~’se

0 < d L
� d(u)�dU <°° a.c. m [0,1]

(3) d(u) — C(U) a.e. [0,1) and c satisfies, for some a > 0.5 ,
1

sup I Ic(u + h) — c(u)1
2 du — 0(6 2ct)

IhI�6 o

(4) a is chosen as a function of the sample size n satisfying
3

h a
U

then as n -’-~~

sup Idm(U) — da(u) I + 0 in probability
0�u�1

where d5(u) is a density function with an infinite autoregressive . -

rsrres.ntation

-.-.

~

.----------- - - --- -.—-

~ 

- -— - .- -.- --
~~~~~
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d (u) —

and satisfying d
a(U) — d(u) a.e. in [0,1]

The pt~ k of this beautiful theorem is being submitted for publication.

An estimator dm(u) of d(u) yields an estimator fQ,~(u) of fQ

which is given explicitly by

A 11+ ~~X (1) a2 iu~~ 
~~~~~ 

+ a ( m ) e2~~
I
~
1
~I f0Q0(u)fQ~ (u) —

A 

J
~ 
Ii 
: 

%(l) e
2ltiU 

+ •..  + (m) e2~~*~ I
2 
f0Q0(u) ~(u) du

where a
m(l),...,am

(m) are the solutions of the normal equations (1).

To compare our autoregressive estimator fQ~(u) with other possible

estimators one must realize that we are actually estimating the triple of

functions fQ, q, and Q , and the basic aim is to form a smooth function
A

Q which is an estimator of Q . One can distinguish three general approaches
A

to forming estimators Q which we call

I. Parametric

II. Non—parametric

III. Non—parametric pre—flattened.

The parametric approach assumes a location and scale parameter represen—

tation Q(u) — 3.1 + 0Q0(u) , forms efficiently estimators ii and a , and then

takes

Q(u) — ~ + 0Q0(u) as the estimator of Q

.,

~



r
The non—parametric approach estimates Q at a point by averaging over

the values of Q(p) for p in a neighborhood of u • An estimator of this

form is usually written as a kernel estimator

1

Q(u) — ~(p) ~ K(~~~1’) dp

for a suitable kernel K and bandwidth h . If one adopts the piecewise—

linear definition of Q , one can differentiate this formula for Q to form
A

a smooth estimator q of the quantile—density q

A 1
q(u) — f ~ (p) ~ K(”~~’) dp0

Estimators of this form are in fact extensively studied in the literature of

non—parametric density estimation (see Bofinger (1975), Moore and Yacke]. (1977)).

under the name of “nearest neighbor density estimates.” Another approach to
A

fitting smooth curves q to the wiggly function q is to use sphines (see

Wahba and Wold (1975)).

The foregoing estimators of q will have good properties only at a

fixed value of u ; the consistency of estimation becomes worse as u tends

to 0 or 1 because q(u) is in general a non—integrable functic”. This

problem can be overcome by multiplying q(u) by a factor f0Q~(u) which

makes the product f0Q0(u) q(u) an integrable function, which is not oscilla-

ting as much. When one smooths not ~ (u) but f
0Q0

(u) ~ (u) , we call the

approach non—parametric preflatteued smoothing. We smooth

d(u) — f0Q0(u) q(u) + • One approach would be to form estimators of the

form

_ _ _ _ _ _ _ _ _ _ _ _ _  

~~~~~~~~~ . J
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d(u) — f a(p) ~ K(’~~~’) dp

It is difficult to use this approach in practice because of difficulties in

optimally choosing h • We believe the autoregressive approach to density

estimation goes a long way towards overcoming these difficulties.

For the mathematical statistician, many problems are open for research

concerning the asymptotic distributions of the foregoing estimators.
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8. Computing Routines and Examples

A computer program which implements the data analysis approach described

here has been developed by Prof. J. P. Carmichael and Mr. David Tritchler.

Given a sample X1,...,X~ it: (1) lists their order statistics, means,

variances, etc.; (2) plots the normalized quantile function; (3) plots

spacings. The f0Q0 functions of various familiar probability laws are

available to be applied. For a specified f
0Q0 

function, the computer pro-

grams (4) plots d(u) the raw transformation—density function; (5) plots

D(u) , the raw transformation—distribution function; (6) plots I~
(
~)I

2 
~

the square—modulus raw transformation—correlations. Next for m — 1,2,...,

the autoregressive approximator d
m

(u) is computed, and its distribution

function Da(u) is plotted superimposed on a graph of ~ (u) to enable one

to see how well Dm (u) f its D(u) . Finally, CAT, a criterion to help

determine the optimal order a of autoregressive approximation, is tabulated,

and the order at which CAT achieves its minimum is determined. In addition,

for each a the density—quantile estimator fQ,,~(u) corresponding to

is plotted. In the absence of a rigorous procedure for determining the

optimal order rn , we choose those values of a for which Dm(u) “fits”

D(u)

Rayleigh example. Tukey (1977), p. 49, gives an example of data

(Rayleigh’s weights of a standard volume of “nitrogen” consisting of 15

measurements) which can be used to look hard at the advantages and disad—

vantages of graphical data analysis techniques. Rayleigh’s observations in

1893—1894 established a discrepancy between the densities of nitrogen pro—

duced by removing the oxygen from air and nitrogen produced by decomposition

of a chemical compound which led him to investigate the composition of air 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . . , . -.
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chemically freed of oxygen which led to the discovery of argon, for which

Rayleigh (1842—1919) was awarded the 1904 Nobel Prize in Physics.

We may def ine the goal of statistical data analysis techniques as

follows: on the one hand, to enable the scientist to win a Nobel Prize; on

the other hand, to pro tect the statistician from being sued by a scientist

who claims that using the statistician’s techniques prevented him (her) from

winning a Nobel Prize.

Tukey discusses how to present the data so as to make it quite clear

that it separates into two quite isolated subgroups, which one interprets as

indicating that the single batch of weights might be two batches of weights

(as in fact they are, one for “nitrogen” from air, the other for “nitrogen”

from other sources).

The presence of two batches will be indicated by the shapes of the

empirical quantile function or spacings. However, I believe it is most

clearly indicated by the presense of two modes in the estimated density—

quantile function. We usually estimate fQ taking as the base function

f0Q0 the standard normal density, so that the procedure also provides a

test of normality. The Rayleigh data is clearly non—normal. We take order

a — 2 as an optimal autoregressive approximation (on the criterion of

the f it of D2(u) to ~(u) ) and obtain the estimated density—quantile

function whose plot appears in Figure I; it is bimodal.

The reader may find it interesting to compare the denaity—quantile

function plot in Figure I with Tukey ’s two batches box and whiskers plot

in Tukey (1977), p. 51. Our left hand mode (representing “other than air”

nitrogen measurements) is lower than the right hand mode (representing

— -. ,-. -—-. — — — p __________________ .- ..-
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“from air” nitrogen measurements), indicating that the left mode population

is more variable than the right mode population.

Buffalo snowfall example, The 63 yearly values of snow precipitation

in Buffalo (recorded to the nearest tenth of an inch) from 1910—

1972 have been extensively analyzed by Carmichael (1976) and Thaler (1972)

to illustrate and compare various probability density estimation techniques.

Different analyses have indicated either a uni-modal or tn —modal density

with the tn —modal shape usually regarded as the more likely answer. In

our density—quantile estimation procedure, with base f0Q0 taken to be the

standard normal, the order 0 and order 1 autoregressive estimator fQ1(u)

are unimodal, and the order 2 autoregressive estimator fQ2(u) is tn —modal_ 
— 2(see Figure II). However all our D and 

~

$j based diagnostic tests of

the hypothesis H0 tha t Buffalo snowfall is normal confirm that it is.

Thus the trimodal density estimator often obtained in previous analyses

seems not to be correct, It is interesting that Tukey (1977), p. 117 also

suggests Buffalo snowfall as an example for analyses (and gives the data

for 1918—1937).
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Figure I. Rayleigh data. Crosses represent

cumulative weighted spacings function

Solid line represents autoregressive estimator

of order 2

\
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Figure II. Rayleigh data. Autoregressive

estimator fQ of density quantile function.

Order 2 chosen on basis of fit of D to
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Figure III. Buffalo Snowfall Data. The sample

quantile function is in upper left graph,

spacings or sample quantile-density function q

La in lower left graph, normal weighted spacings

-1— 
-

d = ç~’ q is in lower right graph, and cumulative

weighted spacings ~ is in upper right graph.
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Figure IV. Buffalo Snowfall Data. Upper left graph
lb

depicts ~ by crosses and D
1 

by solid line;
~

upper right graph depicts D by crosses and D2

by solid line. Autoregressive estimators fQ1

and fQ2 of orders 1 and 2 appear in lower left and

lower right graphs respectively. 
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9. Density—Quantile Classification of Probability Laws

An examination of the density—quantile functions EQ(u) of familiar

probability laws indicate that they can be classified according to their

limiting behavior as u tends to 0 or 1 • The behavior as u “ 1 can

be described as either

fQ(u) (1 — u)° , a > 0

or

- fQ(u) _ (l _ u)(1og l~~u) , O � 8 � 1

positive finite
where g1(u) — g2(u) means g1(u) * g2(u) tends to a/constant (as u ~ 1).

We call a the tail—exponent parameter and $ the shape panameten of

a distribution. A nigonous definition of the tail exponent is given at the

end of the section.

The parameter ranges a < 1, a — , 1 , and a > 1 correspond to the

statistician’s perception that probability laws have three types of tail

behavior:

I. SHORT TAILS OR LIMITED TYPE

II. MEDIUM TAILS OR EXPONENTIAL TYPE

III. LONG TAILS OR CAUCHY TYPE

The names limited type, exponential type, or Cauchy type are used in

the theory of extreme value distributions to describe the types of distri-

butions leading to the three types of extreme value distributions (see Guabel

(1962)).
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Th. uniform distribution has cx — 0 :

f(x) — 1, 0 � x s l  ; fQ(u) — 1 , 0 � u � 1

An .x. ple of a short—tailed distribution is

f(z) • c(1 — x) C l , 0 ~ x � 1 ; fQ(u) • (j . —

where c >0 and B 1/c .

Examples of exponential distributions are

exponential e~~~, x > 0  ; fQ(u) — 1—u

x
logistic e 

x 2 ‘ 
< X < ; fQ( u) u(1— u)

( l + e )

Weibull ~~~~~~~~ , x > 0 ; fQ(u) -
~~ (l — u)~~og 1_u )

c — - ~ > 0

extreme value ex e e , —~~~ < x < 
~ ; 

fQ(u) — (1— u) log i~~u

Normal •(x) — 
1 e~~ 

X 

~ 
fQ(u) — exp — ½ (~~

_ I 
(u)

1 ½
0(x) f $(y) dy (1— u) (2 log i — u ~

It should be noted that in the B parametrization of exponential

type distributions (those for which a — 1) the values 8 0 , .5 ,

and 1 correspond to the extreme—value , normal and exponential distribu-

tions respectively . It should also be noted that the B parametrization

does not cover all exponential type distributions ; in particular

- _ _ _ _  ___________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .~~~~~~~~ - . —..—,—~~ 



it does not cover .

1 1Lognormal f (x) — 
; ~(log x) ; fQ(u) — •0 (u) e U

Pv~~ples of long tail distributions are

Cauchy 2 —
~~ 

< x <
~~~~~ ; fQ(u) ~ cos

2 
“(u — ½)

1+ x
— -

~ sin2 nu — (1. — u) 2

Reciprocal 1 2
of a uniform. —j x > 1 ; fQ(u) (1 — u)

Pareto 8 > 0. (Bx
1+ /8

~~~ , x > 1 ; fQ(u) - (1 -

Tukey A < 1. Q(u) f (uA 
— (l — u)A) ; fQ(u) — (l _ U) a 

a a •
1+u (1— u)

The double—exponential distribution exemplifies another aspect of

distributions which can be used to classify them — their differentiability.

Double— 1 — lx i
¶ exponential 

. e ; fQ(u) — u for u < 0.5

— 1 — u  for u>0.5

The non—differentiability (at x • 0)  of the double exponential density

makes the density—quantile f unction non—differentiable at u — 0.5 • Non—

differentiability of the density is equivalent to the characteristic function

$(u) — J e1~X f(x) dx

-—-- - .~~—‘—-- .--- - — .~~~-.~~~~~~~~~ -----~~~-- ..~~ ---- .— ~~~~~~~~~ 
,
~~~~—~-— ,—.-~~~~~~~~--— - -~~~~~~————-.- ,--- -- , ——,.•-- ,-..

~~ .--— “.-.
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decaying as 1/u2 as u ~ - . Thus one can classify distributions according

to the decay rate of (1) their densities and (2) their characteristic func-

tions. The approach to statistical data analysis discussed in this paper

basically aasuaes that the densities we are considering are differentiable

in order to obtain reasonable rates of consistency for our estimators.

Given data, the parameters we desire to estimate for it are: location

ii , scale a , tail—exponent a , and (when c x —  1) shape B

To efficiently estimate location and scale, one must know f0Q0(u) or

at least its tail exponent a • A formula given by Andrews (1973) for the

tail area of a distribution suggests a fundamental formula for the limiting

behavior of fQ functions as u -‘ 1 , and also suggests a formula which

might be used to rigorously define the tail exponent a of a distribution.

Andrewa’ tail area approximation formula may be written

1- F(x) - K -1 [1 + + - 
K)]

defining g(x) — f’(x)/f(x) — (log f(x)} and

K — ~~~ 
g (x)

x~ g2 (x)

In this formula , let u — P(x) . Then gQ(u) — —J(u) , g’Q(u) — (fQ)”(u) fQ(u) ,

i - u - a ~~~~~~ 
[1 +f(fQ

u ~~ “(u) - 
K)] 

~~~~~~~~~~~ 
.
~~- . - - .. .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ .



defining

a — 
1 K lim fQ(u) (fQ)”(u)

1 — K ’ u+1 J2(u)

The ranges a < 1, a — 1 , cx> 1 correspond to K < 0, K 0,

and K > 0 respectively.

We are thus led to a rigorous definition of the tail exponent cx :

a — 
li-rn (1—u ) J(u)
u~ -1 fQ(u)

This value of a satisfies approximately for u near 1

— (iog fQ(u))’ — IQ(u) — 1—u

whence log fQ(u) — a log (1 — u) 4- constant, and
- 

fQ(u) — (1 — U)
a 

,

which is our intuitive definition of a

One can state a general assumption describing the densities for which

the foregoing relations hold. We consider densities f(x) which may have

several modes (called multi—modal) but they do not have an infinite number

of modes. We call such densities finitely—modal, defined as follows.

A density f is called finitely—modal if: (i) it is non—de creasi ng

on an interval to the right of a — sup{x : P~x) — 0) , and it is non—increasing



r .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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on an interval to the left of b — inf(x ; F(x) — 1) , where

— � a < b � , and (ii) there is a y > 0 such that

sup F(x)(l — F(x)) 
(f’(x)f 

~a <x<b f (x)

or equivalently

sup u(1 — u) ~ J(u)f 
~OCu<l Q u

Finitely—modal densities are considered (without being so named) by

Caorgo and Revesz (1978) who demonstrate that they enjoy strong approximations

of the quantile process; in Section 10 we apply this fact to estimation

of location and scale parameters.

An example of a distribution function which is not finitely-modal is

1 .
1-F (x) = exp (-x- ~~Sin x)

Letting x = Q(u) one obtains a relation for Q(u):

-log (1 - ix) = Q(u) + f Sin Q(u)

whence 1 ~ 
= q(u) (1 + Cos Q(u)3

and fQ(u) = (1-u) (1 +-~~Cos Q(u)~}

As u -, 1, Q(u) -~~• , and fQ (u) oscillates. The hazard quantile function

hQ
~
u) = i + f C o s Q(u )

also oscillates. — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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10. Estimation of Location and Scale Parameters

The problem of estimation of location and scale parameters p and a
usually arises when one assumes that the true distribution function F of

I may be represented

F(x) —

where F0 is a known distribution function; we call this representation

hypothesis H
0 
. An equivalent representation may be given for quantile

functions :

Q(u) — p + aQ0(u) • .

When F0 is not known it may be “estimated” from the data using a

Goodness of Fit Test for the Hypothesis H0 . We have indicated how to find

such goodness of fit tests as a special case of the problem of finding a

function 
~l 

~ such that X ‘1’1
(Y) where Y has a specif ied distribution

• However our approach finds only the derivative q~1(y) — ‘V~~(7) and

thus yields only a representation

• — p + a’Y0(y)

where is an indefinite integral of *1 • Then the quantile function Q

of I has the representation 
-

Q(u) - p + a’V0Q0(u)

- -— . -.-- . -

~

---. . . -.—- - --

~

.- •— -..--- ..---—- .-•..— .- •- .—-——•-• --— - , ..— --—— 
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The parameters Ii and a in this representation would be estimated in the

same way one estimates any other pair of location and scale parameters.

Much work in the last twenty years has gone into showing how to obtain

computationally simple asymptotically efficient estimators of location and

scale parameters p and a using linear combinations of order statistics.

I believe the basic conclusions of this vast effort can be compactly (and

even rigorously) sumearized by applying the theory of regression

analysis on continuous parameter time series from the RKH S (reproducing

kernel Hu bert space) point of view given by Parzen (1961), (1967)

A rigorous starting point are the important theorems by Csorgo and

Revesz (1978) on strong approximation of the quantile process.

Theorem. Let Xj~~•~~
Xn be i.i d. random variables with continuous

d.f. F and differentiable density f which is finitely—modal and has tail

exponent a (as defined at the end of Section 9). The quantile process

~(u) j~ defined in terms of the order statistics X(1) 
< ... < X~~~ , and

let Qu(u) be the quantile process of the uniformly distributed random

variables U~ — P(X1
) • Let

R — sup f~ IfQ(u) (Q(u) — Q(u) } — — U) I
~ 0(u<1

Then almost surely

— 0(n~~ log log n) if a < 1

— 0(n ½(log log n)2) if a — 1

— o(n~~~log log n)a(log n)~~~~~~~~~) if a > 1

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  ~~~ -- .-
~~~
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where C ~ 0 is arbitrary.

To state a theorem concerning the behavior of the uniform quantile

process , recall the definition of a Brownian Bridge {B(u) , 0 � u � 1) ;

it is a zero mean normal process with covariance kernel

— mm (u1,u2) 
- u1u2

Theorem. Csorgo and Revesz (1975). One can define a Brownian Bridge

{B~(u) , 0 � u � 1) for each n such that almost surely

sup 
~~~ 

{~j(u) — u} — B~(u)I — 0(fl ½ log n)
0�u�1

For purposes of statistical inference, we can interpret the foregoing

results as follows: /~ fQ(u) {~(u) — Q(u)} is distributed as a Brownian

Bridge 8(u) • Under the representation Q(u) — p + aQ0(u) we obtain

/~ -
~~~ f~Q0

(u) {~(u) — p - aQ0(u)} — B(u) .

Estimating p and a becomes a problem in regression analysis of

continuous parameter time series by writing

f0%(u) ~(u) - p f0Q0(u) + af0Q0(u) Q0(u) + a8B(u)

where

1a — —  a.B

.-.——— -—---.—. — —-.-.-—-.———--.——._.... . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . . . .~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- .“ ., --—-

~
—-—

~~~~
—-
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We will consider estimators for p and o , treating 
~B 

as a free parameter

not constrained to be related to q • We will find that estimators of

can be used to test the goodness of f it of the model .

The remainder of this section is devoted to writing explicit formulas

for asymptotically efficient and unbiased estimators p and a , which are

linear combinations of order statistics. These formulas assume f
0Q0 and

are known; an open problem for research is the use of these formulas with smooth

estimators f
0Q0 and to provide adap tive estimators of p and a

Estimating p and a given a possibly censored set.of order

statistics X(flp)l~~•~~PX (flq) i~ more conveniently formulated as

using the sample quantile function ~ (u) over a subinterval

p < u < q  of 0 < u < l  (however we permit p = 0  or q = l

as possible cases). To form the estimators 1
~p,q 

and a
p,g based

on this data we need compute the reproducing kernel inner product

(f ,g) of functions on the interval p < u  < q correspondingp,q
to the kernel KB(ul,u2). We claim that this RKIIS consists of

L2 differentiable functions with inner product

~~~s~~> p,q 
= f’(u) g’(u)du

+ f (p) g(p)  + f (q) g (q) .

I. P.—.
~~ -—-—-- —--. •~- -.--- -.-. - — .-—.. .-- -, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— .. . . . 
~~~ ‘— -, ,.. -

~~ 
-- —,
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To verify this assertion, one need only verif y the reproducing 
.
.

• 
. formula . 

. 
. 

.

. 

- 
.

• 
.

: - . (f ,RB (• ,t)) = f(t), p < t < q .  
.

p,q . .

Now . . 
. 

. .
.
: 

- 

. 
-

.

1C~ (u,t) = u(l - t) , p < u < t

— t ( l - u) , t < u < q

. 
. 

~~~
KB (u ,t) = l-t, p < u < t  .

-t, t < u < q  
.

rq ft çq 
- .

I V (u) 
~~~

— KB (u ,t) dt = I .  f’ (U) (l—t)du + J V (u) (—t)du
Jp ~~

.

(f(t) — f(p)}(l—t) + {f(q) — f (t) }(—t) .

— f ( t) - (l-t) f (p) - tf(q) . 
. 

. .

. •

Since f(p)KB(p,t) = f(p)p(l—t) and f(q) IL,1(q,t) f(q) t(1— q) we

•
Mve verified the reproducing property of our formula for inner •

product. . 
. .

.
. . 

. 

.

Define the information matrix

. 

I~~~(p,q) -

I(p,q) = . 
.: ~~~~

I (p,q) . -:

_____________________ ~~~~~~~~~~ .~~~~~~~~~- -- ~~~~~~~~-— ~——  
.. .•—
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. 
. . 

. 

. 
-

. 

- - 

~~
-

where

I (p,q) = (f 0Q0, f0Q0)PU . . p,q . 
, . . _ ;

_
_
•

• _ - .

= I~p (P~~ ) = ( f Q  Q ( f Q ) >  
- 

:-. 
-

p,q 0

I
00
(p,q) = <Q

0
~~~~

0
Q
0
~~~~ 

~o~~o~o~ p,q . 
- 

. ~-H .:

Define 
-

= <f~
Q0. *(f oOo~

)
p q  

- 
•

~ 
:~~~~~

-

T = (Q (f Q ) ,  ~ (f 0Q0)) • . :
n,a,p,q 0 0 0  p,q . - ,

Then the optimal estimators are given by .

- 

T~,p,p,q 

. . 

. .

— I~~~(p,q) 
. . 

. 0 -

• 

. 
- ,

8p,q Tn,a ,p,q

with variance and covariance matrix 
- 

. 
•

0 . 

-

- 

- . 
/ 

-

- 

. 
var(i~p,q) COVUp,qt ap~

.
q)

~2 f’(p,q)

COV(~p,q~ 8p,q) Var(8p,q) •

These estimators maybe justified also by their similarity to those given by -

•

Weiss and Wolfo4tz (1970). .
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Finally to estimate ~
2 we would use an estimator denoted by a2B,p,q

which is formed from the residuals ~(u) — Q(u) ; define

Q
p,q

(U) - )ip q  + ap,q Qo(u)

~~~~~ 

I 

IIf0:0(:){~:u) — Q(U))EI~ ,q

B,p,q n(q— p) B,p,q

If we are willing to accept the model, we could take as our estima—

0 • 
- tor - 

. 
. 

. 
0

*2 l~~~2o = — aB,p,q n p,q •
0

since ~~~~~~~~~~~ 
0 

.

.
. 

0 - 
0 0

In order to explicitly evaluate the inner product (f ,g) p q .

it is often convenient to use no derivatives of g if one is

willing to use second derivatives of f. Since f’g’ + f’g (f ’g) ’

we can write 0 0

- • q

J f’g’du = -J fw gdu+fl g
- p p p

so that 
- 

.

_ _ _ _ _ _ _ _ _  0
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~~~~0

(f ,g)p q  — J f” (u) g(u) du

• + g (p) [~ f(p) — f ’(p ) l 
0

+ g (q) (j~~~ f ( q) + f’(q)]

Thus 0 
. 

- 
: 

. ... : -

- 

-

- (f0Q0, ~(0Qo)) = C 
_{f

0Q0
(u)}Nf0Q0(u) ~(u)du 

-

~ 

0

O 
. + *(p) f 0Q0 (p) [~~f 0Q0 (p) — (f

0Q0)’(p)] 
0

+ ö(q) f~Q~ (q) [j~~ f0Q0 (q) + (f0Q0)’ (q)]

(Q0 (f 0Q
0) ,  ö(f 0Q0)) = •~~{Q0(u) f0Q0

(u)}M f0Q0(u) ~(u)du

+ ö(p) :f0Q0(p) [~~ Q0(p) f0Q0(p) — {Q0(f0Q0)} (p)J

+ ö(q) f0Q0(q) E~~~~Q0(q) f0Q0
(q) + (Q0(f0Q0) }‘ (q)].

0 /

To comprehend the linear functionals in ~ which appear in our

formulas for ~ and a , define the weight functions 

- - —— - - - - - -—~~~~~
.----—- — - ---- - , 0 . 0~~--——-—-—-—--—- .. 0 . - -0 - ---~~ -.-.-’. -••---- , - -~~~~~~ 00
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- 

0 

-

W~ (u) — f f 0Q0 (u)}” f 0Q0 (u ) J~ (u) f0Q0(u)

- 

- 

110 (U) — (Q0(u) f0Q0(u).}” f0Q0(u) 
0 

0 

:

0 
_ J0 (u) + Q0 (u) 36 (u) f 0Q0 (u) 

1.. .

— 30 (u) + Q0 (u) h 11 (u) •. 
. 

0 
- 

-

Define the additional weights factors

W~~(p) — f 0Q0(p)[~ f0Q0(p) + 30(p)J 0~~~ 

0~~~~~
••

W (q) = 
~~~~~ 

— 
- 

0

WaL(p) = f0Q0(p) [~~ Q0(p) f0Q0(p) + Q
0

(p)J 0(p) — 11 
- 

- 

-

— Qo(P)WPL (P) — f000(p) 
0

O 

- 

WOR (q) = f
0Q0 (q) [~~~~~~ Q0 (q) f 0Q0 (q) + 1 — ~~~~~ ~~ 

(q) ] .

- 

— Q0 (~ )W~~ (g) + f 0Q0 (q) . 
. 

- 
- 

0

The linear functionals of ~ which appear in ~ and a may be

written - 0 ~0 
0

- 

0 •

Tn,U,p,q — ~ (u) du + ~~(p) WML
(p) +~~(q) W~~~(~ )

— 110 (u) ~ (u) du + ~ (p) WQL (p) +~~(q) W0~~(q) .

0
0

_ _ _ _ _  _ __  _ _ _ _ _ _ _ _  _ _  0 O 0 - 0 0 O 0 . O•—- ~~~~~~~
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. 
-

These integrals are really linear combinations of order statistics

if we take ~ (u) to be a piecewise constant function equal to

X (j) for (j -1)/n < u < 3/fl .

The entries of the information matrix may be written:

C 130 (u ) 1 2 du + ~~If 0Q0 (p ) I 2 
+ ~~~~~ ~f0Q0(q)I2

0 — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0

•

- 

I~~ 0 (p,q) = _ C J0 (u) EQ0 (u ) 30 (u) — 11 du - 

-

- 
+ A Q0(p)If0Q0(p)1 2

0~~~ 

: +~~~~~ Q0 (q)~~f 0Q0 (q)~~
2 

0 

0

0 

0 

- 

0 

- : . 

— w~ (u) Q0 (u) du + Q0(p) WUL (P) + Q 0 (~ )W~~ (~ )

q -

— W0 (u) du + WOL (p) + wØ~(q) .

0 0

- - O -O- 0 - - - O - 0 - , 0. —— - O

~

- --

~

-

~

00•- - — -  -~~~~ O~~~~~~~~~~~~~ •O 0 — -0~~-~~~~~~~~ •- -~~~~~~-~~~~~~~~ --
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0 
- 

-
.

10,0(p,q) — r 1Q030 (u) — l I 2 du

+ ~ 1Q0(P) ~0
Q0(p)I 

2

+ ~~ 1Q0(q) f 0Q0(q) ~~2

— W0(u) Q0(u) du + Q~ (p) WOL(p) +Q0(q) WØ~ (q) 
0

In the case of a symmetric density f0(x) = f0(-x), we have

f0Q0(1— u) = f0Q0(u) 
-

J0(l— u) = —30(u) 
-

-

00(l—u ) = . —Q~ (u) 
- 

- 

0

For the case of censorship which is symmetric in the sense that 0

0 
q — l-p, I~0(p,q) = 

0 and 
- 

0

0 0 
0 

- 

- •

0
• 

- •
• 

- 
-

0 ~~~~~~~~ 
• 0 

-

p,q 1~~ (p,q) 0 0 :  0 

-
-

A . .- 
— 

n,a,p,q 
- 

• _
_

0 O0p,q 1
00

(p,q) 
-

Syninetrically censored normal samples is an important case

which we discuss in detail. For the normal distribution

~~~~~~ 0 0 0~~~~~ 0 0 0 0 0 0 0 - - O- ~- 0-0 -~~~~~-—.O,0---—-’-- ••-. -- 0•- 0- - -O 0 0 0-- .---- O •-— — -  ~ 0 0 0~~~~~~~ 0 0 0 0 0 0 0 -~
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f0Q0(u) 
— -1-exp —~IO~~(u)I 2 ,

0 • - . :  -. -

—

W~(u) — 1

(u) — ~~~~ Cu) 
- - - - 

-

— f0Q0 ~~ nh f0Q0 (q) — •
—l 

~~~ 
~~
- : —~ 

-

— f0Q0(q) El + •
1(g) 

~ih 
f
0
Q0(q) 

- •
1(q)}]. 

0 

- 

0

0

In order to study the behavior of these weights as q -~ 1, we note

an important property of the normal distribution (which follows from

Feller, Vol. 1, p. 166, eq. (1.8)]: 
-

- 0 

~0 <~~~~~ f0Q0(q) - ~~1(q)~~ ~~~~~~~~~ (~~1~~~~~
2 - 0 •

which tends to 0 as q tends to 1. 0 
-

0 

•

. 

, .-;-- ---- ~~~

.
. 

~ 

0

0

•

-, 
. 

0 
. 

-

- 
0

-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 00_~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~0~~~~ 0
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U. Some open research problems for extensions 0

The approach described in this paper can be described as one which

formulates statistical estimation and testing problems as problems of density

estima t ion and testing for white noise. This paper discussed only the univar—

iate one—sample case. Two—sample and multivariate (including non—parametric

regression) problems can be treated similarly (see Parzen (1977)). This

section describes some extensions of our results in the one—sample case

whose theory and application is open for research.

Power Transformation to Normality. The transformation of a random

variable X to a N(p ,c72) distribution is often assumed to be of the form

~(x) _f{(x~~ CYt~~ l} , X # 0

— log (z — C) , A — 0

The derivative ~~x) — ‘V’(x) has a single formula

A—l*(x) — (x — C)

The quantile f unct ion Q(u) of X is then related to the standard

normal quantile function •~~(u) by

p + a~~~(u) — -
~~~ 

((Q(u) — ~~~~ — i) , A ~ 0

0 

• log (Q(u) — 
~~
) , A — 0 .

~

0

~ 

-~~~~~~~~ ~~~
—

~~
--.
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The density—quantile function of X satisfies

log fQ(u) — —log a + log •~
4(u) + (A — 1) log (Q(u) — C)

The problem is: (1) to use these relations to estimate the parameters A

and C ; and (2) compare these estimators with the estimators of Box and

Cox (1964) . 
-

Survival data. Let ~~~~~~~~ be a random sample from a single

lifetime or survival distribution F with quantile function Q . However

one may fail to observe an X (called a “death”) due to the previous occur-

rence of some other event Y (called a “loss”) which has distribution H

The desired value X is censored on the right by Y , and one observes

- 

Z — min (X,Y)

with distribution function C satisfying

1 — C — (1 — P)(1 — H)

under suitable independence assumptions.

Frcs the observed data Z1,... Z one can form an estimator ~ of

P introduced by Kaplan and Meier (1958). Its quantile function Q is an

estimator of Q . The asymptotic distribution theory of and ~~ has

been found by Breslow and Crowley (1974) and Sanders (1975) respectively;

the latter shows that 1’ fQ(u) {Q(u) — ~(u) } , 0 c u c 1 , converges in

_ _ _  

j
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distribution (as a atQchastjc process) to a zero mean Gaussian process with

covariance kernel K given by

min (u ,u ) —L(u1,u2) — (1 — u1)(1 — u2) j 
1 2 

dv (1 — v)
2 U — HQ (v) }

0

When there is no censoring, H — 0 and I((u1,u2) — u1(l — u2) for u1 < u2 ,

the covariance kernel of the Brownian bridge.

The covariance kernel K has an integral representation which makes

it easy to find its RKHS inner product. Thus one would have no difficulty

extending the results of Section 10 to estimation of location and scale

parameters from survival data.

Sampling the Quantile Process. Suppose that to compress the data one

seeks to reduce a sample of size n to k values, namely the order statis-

tics — ~(p4) corresponding to specified percentiles ~l’•••’~k

One can choose these percentiles so that the optimal linear estimators
A A

p and a that could be formed from them have variances which are a minimum

over all choices of k points at which to sample ~ (u) . Results of this

kind could be deduced from the work of Sacks and Ylvisaker (1966) on designs

of continuous parameter time series regression problems.
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